4 분 소요

논문링크


한줄요약 ✔

  • Explicit Pseudo-pixel Supervision (EPS++) learns from pixel-level feedback by combining two types of weak supervision: localization and saliency maps.
    • localization map ↔ object identity.
    • saliency map ↔ rich object boundaries.
  • Inconsistent Region Drop (IRD) strategy.
    • Effectively handles errors in saliency maps using fewer hyper-parameters than EPS.
  • Extended to solve the semi-supervised semantic segmentation problem using image-level weak supervision.

Preliminaries 🍱

CAM

Model Architecture

image

  • CNN의 최종 layer 출력인 feature map에 channel-wise 계산법인 GAP를 적용하여 feature map의 spatial info.를 유지 (기존 CAM에서는 1차원 배열로 point-wise하게 flatten시킨 후 fc-layer의 인풋으로 활용한다).
    • 각 채널은 이미지에서 각 객체의 특징을 표현한다 (채널 개수=커널 개수).

image

  • 이후, FC-layer에서 각 특징을 담고있는 feature map의 평균값을 인풋으로 받고, 각 인풋의 각 class에 대한 민감도를 softmax를 거쳐 weights로 표현한다.

Equation

\(Y^c=\Sigma_k w^c_k {1 \over Z} \Sigma_{i,j} A^k_{i,j}\)

  • \(Y^c\): class \(c\)에 대한 score (모델 예측 logit/output).
  • \({1 \over Z} \Sigma_{i,j} A^k_{i,j}\): feature map \(k\)의 GAP 값.
    • \(Z\): feature map \(k\)에서 pixel 개수.
  • \(w^c_k\): feature map \(k\)의 class \(c\)에 대한 민감도.
  • \(A^k_{i,j}\): feature map \(k\)의 \(i,j\)에 해당하는 pixel 값.

Weak Supervision

1) Weakly supervised semantic segmentation (WSSS)

  • Pseudo-masks are generated for target objects using an image classifier (i.e., CAM).
  • Then, the segmentation model is trained using the pseudo-masks as supervision.

2) Semi-supervised semantic segmentation (SSSS)

  • A segmentation network is trained using a small number of labeled data (e.g., 10% of the original train set) and a large number of \((1)\) weakly labeled data from the pipeline of WSSS or \((2)\) unlabeled data.
    • \((1)\) Full supervision (i.e., pixel-level annotation) is partially available, and the rest is weak supervision.
    • \((2)\) Full supervision is partially available, and the rest is unsupervised.

⇒ WSSS를 타겟으로 삼는 본 논문에서는 \((1)\)번 경우를 target으로 삼는다.

⇒ 하여 EPS++는 더 정확한 pseudo-masks를 생성하고, 이것은 SSSS의 성능 향상으로 이어진다.

3) Saliency-Guided Semantic Segmentation

  • Our EPS++ can be categorized as a saliency-guided method.
    • our method utilizes the saliency map as pseudo-pixel feedback for localization maps.

EPS

here


Challenges and Main Idea💣

C1) DNN-based semantic segmentation methods require a significant amount of pixel-level annotation, which is extremely expensive and time-consuming to obtain.

I1) Weak supervision.

C3) Existing tentative solutions still have their defects in performing semantic segmentation.

I2) EPS++


Problem Definition ❤️

Given a weak dataset \(\mathcal{D}\).

Return a model \(\mathcal{S}\).

Such that \(\mathcal{S}\) approximates the performance of its fully-supervised model \(\mathcal{T}\).


Proposed Method 🧿

Erroneous Saliency Maps

Problems in Saliency Maps

image

  • \((1)\) Missing class error: A saliency map captures the full extent of some target classes, but not all target classes.
  • \((2)\) Missing object error: A saliency map covers only a portion of the target object.
  • \((3)\) False object coverage error: Non-target region is captured as salient region.

⇒ This systematic error is inevitable because the saliency model learns the statistics of different datasets.

Limitation of EPS

| | \((1)\) | \((2)\) | \((3)\) | | — | — | — | — | | EPS | O | X | X |

  • \((1)\): CAM 사용해서 각 클래스 별로 객체 나누는 localization maps 생성 후 다시 취합한다.
  • \((2),(3)\): class-wise errors만 해결하고, pixel-wise errors 해결 X \(\rightarrow\) IRD 등장.

Inconsistent Region Drop (IRD)

Background of IRD

  • 기존 EPS 한계를 벗어나 pixel level 단위로 handling 하기 위해 도입.
  • 정답 saliency map과 estimated foreground saliency map \(M_{fg}\)간의 일치하지 않는 Inconsistent region는 error 모델 성능 저하 요인이라 판단.
    • Inconsistent region: the region where \(M_{fg}\) mismatches the saliency map; it could be erroneous.
  • 이러한 Inconsistent region에 해당하는 pixel들은 saliency loss 계산 과정에서 제외.
    • 하지만, \(M_{fg}\)에는 inaccurate boundaries가 많아서 대부분 inconsistent regions으로 분류되어 saliency loss 가 높게 측정 \(\rightarrow\) Refinement module 등장.

IRD

  • Can preserve boundary information in \(M_{fg}\) and obtain the refined foreground map \(M_r\).
  • \(M_r\): refined foreground map obtained by applying PAMR to the localization maps \(M\).
    • \(M\): 각 클래스 객체별 localization map; CAM으로 부터 생성됨.

Pixel-adaptive mask refinement (PAMR):

Iteratively refine label predictions by utilizing pixel-level affinity (보다 자세한 내용은 해당 모델 논문 참조).

Architecture

image

Loss Function

\(\mathcal{L}_{total}=\mathcal{L}_{cls}+\mathcal{L}_{sal}\)

Saliency Loss

\(\mathcal{L}_{sal} = \frac{1}{\vert 1 - N \vert} \Sigma^{HW}_{p=1} (1-N^p) \cdot (M^p_s - M^p_{fg})^2,\)

  • \(N=\mathbb{B}(M_r) \odot \mathbb{B}(M_s),\) .
    • \(N\): an inconsistent region.
      • \(M_r\)과 \(M_s\) 간의 inconsistent region.
    • \(M_s\): the saliency map obtained from the off-the-shelf saliency detection model, PFAN trained on the DUTS dataset.
    • \(M^p_{fg}\): 기존 EPS으로 생성된 feature map (refined estimated saliency map과 다름).
    • \(\odot\): XOR.
    • \(\mathbb{B}\): the round operation (i.e., \(\mathbb{B}(M^p_k)=1\) if \(M^p_k >0.5;\mathbb{B}(M^p_k)=0\)).
      • \(p\): a pixel.
  • \(M_{fg}=\Sigma^C_{i=1} y_i \cdot M_{i},\)
    • \(C\): class.
    • \(y_i \in \mathbb{R}^C\): the binary image-level label.
    • \(M_i \in \mathbb{R}^{H \times W}\): the \(i\)th localization map (generated by CAM).

Class Loss

\(\mathcal{L}_{cls}=-\frac{1}{C} \Sigma^C_{i=1} y_i log \sigma (\hat{y}_i)+(1-y_i) log (1-\sigma(\hat{y}_i)),\)

  • \(\sigma\): the sigmoid function.

WSSS+SSSS

  • Employ the idea of EPS++ on both WSSS and SSSS to demonstrate its effectiveness.
  • Apply our EPS++ to the semi-supervised semantic segmentation task (i.e., utilizing both full and weak supervision)

⇒ EPS++ achieves remarkable performances in both weakly and semi-supervised semantic segmentation tasks.


Experiment 👀

image

image

image

  • 요즘에 accept되는 논문들은 실험 결과가 거진 좋아서 시간이 허락되지 않으면 굳이 구체적으로 살펴보진 않는다.
  • 다만, 경쟁 모델들이 EPP++ 이전 모델인 EPS 모델 논문의 투고 이전 시점의 경쟁 모델들만 활용한 것이 의문이다.
  • 보다 자세한 정보는 해당 논문 참조 요망.

Open Reivew 💗

NA


Discussion 🍟

NA


Major Takeaways 😃

NA


Conclusion ✨

  • We propose a novel weakly supervised and semi-supervised segmentation framework, namely explicit pseudo-pixel supervision (EPS++).

Reference

NA

댓글남기기